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MICROWAVE SIGNATURES OF FIRST-YEAR AND

MULTIYEAR SEA ICE

P. Gloersen, W. Nordberg, T. J. Schmugge, and T. T. Wilheit

NASA Goddard Space Flight Center

and

W. J. Campbell

Ice Dynamics Project, U.S. Geological Survey

ABSTRACT

A combination of remote sensing from an aircraft and simultaneous surface

measurements have confirmed the feasibility of identifying old and new sea ice

according to its emission of thermal radiation at wavelengths between 0.3 and

3 cm. Emissivity of first-year thick ice with a surface temperature of about

260 K is 0. 95 or greater for wavelengths between 0. 81 and 11 cm; the emissivity

of multiyear ice is 0. 8 at 0. 81 cm and 0. 95 at 11 cm, increasing monotonically

in this wave length interval. The ease with which multiyear ice can be distin-

guished from first-year ice using a passive microwave radiometer is demon-

strated by comparing mosaics prepared both from photographs and images of

1. 55 cm radiation.
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MICROWAVE SIGNATURES OF FIRST-YEAR AND

MULTIYEAR SEA ICE

INTRODUCTION

A recent study (Wilheit, et al. 1971) of the microwave radiation from sea

ice north of Pt. Barrow, Alaska, has indicated that the emissivity can vary sig-

nificantly according to ice types. Microwave emissivities, photographs, and

laser profilometer data were related to two classifications of large ice areas:

one year or younger and multiyear ice floes. These classifications were con-

sistent with simultaneous visual observations also made from the aircraft. In

terms of microwave signatures, two distinct ice types existed in that region du-

ring the late Spring, when the average ice temperature integrated vertically is

at its annual coldest, low emissivity ice which was visually identified as multi-

year ice, and high emissivity ice which corresponded to first-year or younger

ice.

These correlations established in that study, however, were tentative, both

because of the absence of surface-based observations and because the observa-

tions appeared to be in conflict with theoretical predictions of ice emissivity as

a function of age (Hoekstra and Cappillino 1971, Stogryn 1971). According to

that theory, the microwave emissivity of first-year ice should decrease rapidly

as temperature increases to the melt point. Yet, the ice surface temperatures

measured with an infrared radiometer on board the aircraft during that study

was uniformly 274 *2 K. Also, the incipient water ponds, the wet ice, and the
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general melting which were encountered during the Wilheit et al. (1971) study

raised questions regarding the validity of the reported correlations of microwave

brightness temperatures with the age of the ice.

Basharinov, et al. (1971) reported observations from the Cosmos 243 satel-

lite and indicated that the microwave brightness temperature of sea ice depends

on its thermometric temperature, compaction, thickness, skin depth, and tem-

perature profile. They distinguish between the brightness temperatures at vari-

ous wavelengths of continental glaciers, ice shelves, and sea ice. Although they

discuss radiometric data acquired over both polar regions, they did not report

any contrasts between the microwave signatures of first-year and multiyear sea

ice present in the Arctic region. For these reasons, we conducted airborne

measurements of the microwave emission from Arctic sea ice combined with

extensive surface based measurements obtained partly by one of us (Campbell)

and partly by others with the Arctic Ice Dynamics Joint Experiment (AIDJEX).

Also, these measurements were made under conditions of much lower surface

temperatures. The results from these measurements and their interpretations

are reported here.

DESCRIPTION OF EXPERIMENT

The instruments used for these measurements are listed in Table I. For

the most part, they have been described elsewhere, as indicated in Table I.

These instruments were flown on the NASA Convair 990 aircraft laboratory.

Measurements were made at several different altitudes. At the high altitude,
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10km, a five-track grid pattern was flown so as to obtain a synoptic view of a

macroscale area of sea ice. Measurements at 1. 55 cm wavelength obtained du-

ring these runs were used to prepare a mosaic of radiometric images in false-

color format to present a pictorial view of the area surrounding the AIDJEX site,

where surface data were acquired. Infrared Ektachrome photographs were also

taken during these runs from which a photomosaic of the area was obtained. Es-

sential for this portion of the experimentation was the inertial navigation system

on board the aircraft which permitted absolute positioning of the grid lines to

within about 1.6 km.

The lower altitude runs, at about 0. 8 km, were used to correlate the high

precision multispectral radiometric measurements with ice characteristics ob-

served in the vicinity of the AIDJEX site. These surface data consisted of meas-

urements of ice thickness, temperature profiles, and salinity profiles at a few

selected sites. In addition, extensive identifications of ice types were made

over a much larger area, especially in the area of the AIDJEX strain array.

Standard meteorological observations also were made continuously at the AIDJEX

site, and occasionally at remote sites.

RESULTS

A photomosaic of the grid area is shown in Figure 1. The ring in the center

of Figure 1 marks the location of the main AIDJEX camp, which was located on

the edge of a large multiyear ice floe. Adjacent to the camp to the north was

an area of smooth first-year ice which served as the aircraft landing site for the
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camp. However, the differences in these ice types could not be discerned, even

from the original photographs, nor could they be recognized visually from the

Convair 990. Only the general pattern of leads which is partially obscured by

the undercast of stratus clouds is evident in the photomosaic.

The large multiyear ice floe on which the AIDJEX camp was located is easily

recognized in the 1.55 cm microwave false-color image shown in Figure 2, as a

large blue (210-225 K) island in a sea of yellow (235-250 K). Surface measurements

at the AIDJEX site have confirmed conclusively that the radiometrically colder

areas of the scene (blue) are areas of multiyear ice and that the radiometrically

warmer areas are associated with first-year ice. The AIDJEX triangular tel-

lurometer strain array is shown in Figures 1 and 2; in situ measurements have

shown that the entire strain array was on first-year ice (Hibler, et al. 1972).

Analyses of ice corings in the vicinity of the AIDJEX camp itself have shown

that the camp was located on thick, multiyear ice. Also, visual observations

during foot and sled traverses indicated that the large floe on which the camp

was located was uniformly of multiyear structure. Both the surface-based meas-

urements and airborne infrared radiometer temperature measurements (during

the low level flights) have shown that the physical temperatures of both types of

ice were equal (within 5 K), so that practically all the observed brightness tem-

perature differences were due to the variation of the microwave emissivity of

the ice. A striking feature in the lower brightness temperature, large multiyear

floe, is a set of linear features formed by higher brightness temperatures and

4



shaped as an inverted V. This feature is easily seen in Figure 2, but is just

barely distinguishable in the photomosaic (Figure 1). Evidently, this large floe

had begun to break up late in the previous summer but then refroze into this

present configuration. It can also be seen that the high brightness temperatures

are of first-year ice and contain numerous smaller multiyear ice floes. The

narrow, dark leads in Figure 1 do not appear in the microwave mosaic since

they are beyond the resolution capability of the microwave radiometer.

Figure 3 shows a 1. 55 cm microwave image of the same area as that shown

in Figures 1 and 2, but obtained on the following day. The same patterns as in

Figure 2 are evident, but brightness temperatures are generally about 8 K higher.

This is attributed to the cloud cover over the entire site during that day. This

brightness temperature increase is not caused by microwave emission from the

clouds which is predicted to be negligible for clouds of such small liquid water

content, but is attributed rather to the higher surface temperatures on the ice

on a cloudy day. The lesser radiative cooling which was responsible for the

higher surface temperature of the ice was confirmed by infrared measurements

of the surface temperature on a portion of the low level flights during that day

under the cloud cover.

The multispectral microwave brightness temperatures measured in the

nadir direction during the low-level passes on the cloud-free day are shown in

Figure 4. The flight line for this particular example is indicated in Figure 3,

starting in the area of first-year ice and travelling generally southwestward
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across the multiyear floe, particularly across the inverted V-shaped pattern

of refrozen leads. The brightness temperatures from the two longest wavelength

radiometers (21 and 11 cm) are essentially featureless except for an occasional

simultaneous decrease of about 10-15 K which is attributed to thin ice, the order

of one wavelength in thickness. At 6.0 cm, the multiyear versus first-year ice

brightness temperature difference can just barely be discerned, and only after

relating it to the same feature observed much more clearly by the shorter wave-

length radiometers, namely, at wavelengths of 2. 8 cm and shorter. Looking at

the vertical and horizontal channels of the 0. 81 cm radiometer, it can be seen

that the multiyear ice floe shows little, if any polarization. The same was ob-

served at 0. 32 cm, but is not illustrated in Figure 4. It should be emphasized

that the analysis of the large floe in the vicinity of the AIDJEX camp definitely

identified the ice species as multiyear rather than glacial ice (ice island), for

which polarization effects at microwave frequencies have been informally

reported.

The emissivity difference between the multiyear ice and the first-year ice

for the various wavelengths is in agreement with values reported earlier

(Wilheit et al., 1971), generally following a linear increase with frequency, and

reaching a maximum value of 0.19 at 37 GHz (0. 81 cm). The measurements at

0.32 cm shown in Figure 4 are much less accurate than those at the other

wavelengths because of calibration uncertainties in that particular instrument

as installed in the aircraft, so we are not in a position to ascertain or refute

the continuation of the linear increase of the emissivity difference to that
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wavelength. The crossing of the refrozen leads which form the inverted V pat-

tern in Figures 2 and 3 can be recognized in the low level pass shown in Figure

4 as the five large brightness temperature increases at the 0. 32 and 0. 81 cm

wavelengths between 30 and 40 km along the track of the aircraft. To some ex-

tent, this increase can also be seen at 1. 55 and 6.0 cm, but it is not as clearly

defined at these longer wavelengths. Another series of brightness temperature

peaks appears in the 0. 81 and 0. 32 cm instruments at 70 to 85km in Figure 4.

In contrast to the peaks associated with the refrozen leads at 30 and 40km dis-

cussed above, this series is embedded in first-year rather than multiyear ice

and the brightness temperature increase is much stronger at 0.32 cm than at

0. 81 cm. A scrutiny of the photographs covering this area reveals that these

peaks also correspond to refrozen leads. It appears that these leads have re-

frozen more recently than those at 30-40km and have less snow cover than the

surrounding first-year ice. Thus, the presence of snow cover on first-year ice

seems to be more readily detected (by measuring the depressions between the

peaks) at the 0.32 cm wavelength than at the longer wavelengths.

For comparison, the output of the nadir-viewing infrared radiometer which

corresponds to the ice surface temperature has also been presented in Figure 4.

Clearly, there are no thermal features which would suggest any correlation with

the contrasts observed by the microwave radiometers. The only temperature

features are a general cooling trend from 270 K to 260 K along the direction of

the aircraft track and, about at the midpoint of the large ice floe, a sudden
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temperature decrease of about 5 K. The latter decrease is attributed to a rather

abrupt clearing of the overcast encountered at that point during the low-level air-

craft pass over the large multiyear floe. A corresponding decrease in the sky

brightness temperature was measured about two minutes (18km) earlier by the

0. 96 cm zenith-viewing radiometer and is shown in the partial record from this

instrument (Figure 4) indicating a thinning of the cloud at that point.

In Figure 5, we have shown the angular dependence of the emissivity of both

ice types discussed here for the 1.55 cm wavelength (horizontal component). As

can be seen, the limb darkening is greater for the multiyear ice than for first-

year ice.

CONCLUSIONS AND DISCUSSION

The results of these microwave and infrared airborne observations of sea

ice when combined with the AIDJEX surface measurements, have demonstrated

conclusively that, under typical mid-winter conditions, the microwave emissiv-

ity of multiyear ice is less than that of first-year ice and that the emissivity dif-

ference increases approximately linearly with frequency up to at least 37 GHz

(0. 81 cm). The emissivity of the first-year ice was close to unity for the wave-

length range of 11 to 0.31 cm. For each ice type, the emissivity shows little

polarization. These results certainly cannot support the prima facie conclusion

that the lower salinity of multiyear ice would produce higher brightness temper-

atures than first-year ice. Similarly, the assumption that the greater roughness

of multiyear ice, which is produced by dynamic deformations, increases its

microwave emissivity is invalidated by these observations.
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Questions remaining unresolved are the uniqueness of this emissivity dif-

ference with regard to the two ice types, the variation of emissivity of first-

year ice with surface temperature between 260K and the melt point, and the

variation of emissivity with intermediate ice ages. Data for the last two ques-

tions will have to be obtained in subsequent missions. We have obtained some

data on the first question entirely by airborne means and at separate locations

from the AIDJEX activity; there appears to be at least two other ice types which

have emissivities substantially lower than first-year thick sea ice, namely,

first-year thin and sea ice of glacial origin. However, the variations of the

emissivities of these ice types with wavelength and polarization appear to be

different from the variations exhibited by thick multiyear ice. Measurements

dealing with these ice types will be published separately.

A qualitative understanding of the emissivity variation in sea ice may be

obtained by considering the variation of the electrical -conductivity of the ice

with variation in salt content which is a function of age and the scattering of micro-

wave radiation by inhomogeneities within the ice. Thus, first-year sea ice might

be considered as a lossy dielectric, and multiyear ice as a good dielectric. The

skin depth in first-year ice should be in the order of a wavelength while that for

multiyear ice should be many wavelengths. In the case of first-year ice, then,

any emerging radiation would have to originate from within this limited skin

depth; multiyear ice, on the other hand, would be transparent from much greater

depths. This greater depth penetration results in considerable volume scattering
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for the emerging radiation. Such volume scattering would reduce the emissiv-

ity observed above the surface and may be caused by the presence of empty

brine pockets above sea level, or by the crystal structure of the ice. The exact

nature of the volume scattering remains to be pursued further. This concept

also explains the wavelength dependence of the emissivity because the volume

scattering centers will have characteristic dimensions of the order of milli-

meters and will therefore scatter more strongly at shorter than at longer wave-

lengths. The limb darkening shown in Figure 5 is also consistent with this vol-

ume scattering concept.
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FIGURE CAPTIONS

1. Photomosaic of the test area, centered at about 74° 6'N, 131017'W. The

aircraft altitude was 11 km; the photographs were taken on Infrared Echta-

chrome with an RC-8 aerial camera during the flight of March 15, 1971.

The AIDJEX campsite is within the circle. The triangle indicates the

AIDJEX tellurometer strain array. The area shown is about 80km x 100km.

2. False-color image of 1. 55 cm microwave radiometer data covering the same

time period and test area as shown in Figure 1, showing again the positions

of the AIDJEX campsite and strain array.

3. The same as Figure 2, but taken on the following day with a complete under-

cast. The diagonal line passing through the campsite indicates the locations

of the low-altitude run from which the data of Figure 4 were obtained.

4. Multispectral data obtained on March 16, 1971 during the low-level pass at

300m altitude along the track indicated on Figure 3. Here, Z = zenith-

viewing, H = 45° - viewing in horizontal polarization, and V = 45 ° - viewing

in vertical polarization. The data dropouts in the 2. 81 and 0. 96 cm radiom-

eters correspond to calibration cycles at those times.

5. Angular dependence of the brightness temperatures of first-year and multi-

year sea ice for the horizontal component of the 1. 55 cm radiation. The

thermometric temperature of the surface of the ice was about 258 K. Each

point represents an average over at least a 12 km-long sample of uniform

sea ice along the track shown in Figure 4.
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PASSIVE MICROWAVE IMAGE OF ARCTIC SEA ICE (X= 1.55 CM) 
(NASA CV-990 AIRCRAFT, 15 MARCH 1971-CLEAR DAY) 
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PASSIVE MICROWAVE IMAGE OF ARCTIC SEA ICE (X=I.55CM) 
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